BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations.

نویسندگان

  • Tomasz Stoklosa
  • Tomasz Poplawski
  • Mateusz Koptyra
  • Margaret Nieborowska-Skorska
  • Grzegorz Basak
  • Artur Slupianek
  • Marina Rayevskaya
  • Ilona Seferynska
  • Larry Herrera
  • Janusz Blasiak
  • Tomasz Skorski
چکیده

BCR/ABL kinase-positive chronic myelogenous leukemia (CML) cells display genomic instability leading to point mutations in various genes including bcr/abl and p53, eventually causing resistance to imatinib and malignant progression of the disease. Mismatch repair (MMR) is responsible for detecting misincorporated nucleotides, resulting in excision repair before point mutations occur and/or induction of apoptosis to avoid propagation of cells carrying excessive DNA lesions. To assess MMR activity in CML, we used an in vivo assay using the plasmid substrate containing enhanced green fluorescent protein (EGFP) gene corrupted by T:G mismatch in the start codon; therefore, MMR restores EGFP expression. The efficacy of MMR was reduced approximately 2-fold in BCR/ABL-positive cell lines and CD34(+) CML cells compared with normal counterparts. MMR was also challenged by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which generates O(6)-methylguanine and O(4)-methylthymine recognized by MMR system. Impaired MMR activity in leukemia cells was associated with better survival, accumulation of p53 but not of p73, and lack of activation of caspase 3 after MNNG treatment. In contrast, parental cells displayed accumulation of p53, p73, and activation of caspase 3, resulting in cell death. Ouabain-resistance test detecting mutations in the Na(+)/K(+) ATPase was used to investigate the effect of BCR/ABL kinase-mediated inhibition of MMR on mutagenesis. BCR/ABL-positive cells surviving the treatment with MNNG displayed approximately 15-fold higher mutation frequency than parental counterparts and predominantly G:C-->A:T and A:T-->G:C mutator phenotype typical for MNNG-induced unrepaired lesions. In conclusion, these results suggest that BCR/ABL kinase abrogates MMR activity to inhibit apoptosis and induce mutator phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BCR-ABL-mediated inhibition of apoptosis with delay of G2/M transition after DNA damage: a mechanism of resistance to multiple anticancer agents.

A critical determinant of the efficacy of antineoplastic therapy is the response of malignant cells to DNA damage induced by anticancer agents. The p53 tumor-suppressor gene is a critical component of two distinct cellular responses to DNA damage, the induction of a reversible arrest at the G1/S cell cycle checkpoint, and the activation of apoptosis, a genetic program of autonomous cell death. ...

متن کامل

The chimeric ubiquitin ligase SH2-U-box inhibits the growth of imatinib-sensitive and resistant CML by targeting the native and T315I-mutant BCR-ABL

Chronic myeloid leukemia (CML) is characterized by constitutively active fusion protein tyrosine kinase BCR-ABL. Although the tyrosine kinase inhibitor (TKI) against BCR-ABL, imatinib, is the first-line therapy for CML, acquired resistance almost inevitably emerges. The underlying mechanism are point mutations within the BCR-ABL gene, among which T315I is notorious because it resists to almost ...

متن کامل

Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction.

Dasatinib (BMS-354825), a novel dual SRC/BCR-ABL kinase inhibitor, exhibits greater potency than imatinib mesylate (IM) and inhibits the majority of kinase mutations in IM-resistant chronic myeloid leukemia (CML). We have previously demonstrated that IM reversibly blocks proliferation but does not induce apoptosis of primitive CML cells. Here, we have attempted to overcome this resistance with ...

متن کامل

BCR/ABL stimulates WRN to promote survival and genomic instability.

BCR/ABL-transformed chronic myeloid leukemia (CML) cells accumulate numerous DNA double-strand breaks (DSB) induced by reactive oxygen species (ROS) and genotoxic agents. To repair these lesions BCR/ABL stimulate unfaithful DSB repair pathways, homologous recombination repair (HRR), nonhomologous end-joining (NHEJ), and single-strand annealing (SSA). Here, we show that BCR/ABL enhances the expr...

متن کامل

Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, STI571).

Imatinib mesylate, a selective inhibitor of the Abl tyrosine kinase, is effective as a single-agent therapy for chronic myelogenous leukemia. However, resistance has been reported, particularly in patients with advanced-stage disease. Mutations within the Abl kinase domain are a major cause of resistance, demonstrating that Bcr-Abl remains a critical drug target. Recently, a novel pyrido[2,3-d]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 68 8  شماره 

صفحات  -

تاریخ انتشار 2008